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Chirality is the property which differentiates an ob- 
ject from its mirror image. It) is manifested in experi- 
ments which lead to the determination of a real num- 
ber, depending on the measured object but not its ori- 
entation in space, and having opposite signs for anti- 
podic objects. 

We may refer to measurements, such as optical rota- 
tion or circular dichroism, as “pseudoscalar measure- 
ments.” In  chemistry, pseudoscalar measurements 
are used to  get information about the structure of mole- 
cules. For this purpose one needs aspects to relate the 
measured values to the influence of some individual 
parts of a molecule, their interactions, and their loca- 
tion within a molecular skeleton. 

There are many theories explaining special pseudo- 
scalar measurements of special molecules, partly on 
quantum-mechanical, partly on classical grounds, but 
no effort has been made to establish a general analysis 
on an algebraic basis. An algebraic treatment, how- 
ever, is just what is required to provide qualitative con- 
cepts which give insight into the phenomenon itself as 
well as into the structure of relevant theories whatever 
kind they may be. The purpose of this Account is to 
review some results which are part of a general alge- 
braic theory derived in a series of previous 
We restrict ourselves to a selection of those statements 
which can be formulated without going too far into 
mathematical details. 

Homochirality3 
If asked to put our left shoes into one box and our 

right shoes into a second box we could accomplish the 
task without mental difficulty, in spite of the fact that  
the right shoes belonging to different people may be 
quite different in color, shape, and size and although, 
probably, there is not a single pair of shoes which are 
precise mirror images of each other. 

If asked to solve the same problem with potatoes, we 
must capitulate. Of course, it  is possible that by 
chance we find an antipodal pair. It is then clear that  
we must separate them, but for other potatoes different 
in shape, we have to make new arbitrary decisions each 
time. Any classification would be very artificial. 

Ernst Ruch was born in Munich  in 1919. H e  started his higher edu- 
cation in engineering at the Technical University in Munich ,  went on  to 
theoretical physics, and took a postgraduate position in mathematics 
there. H i s  first activity in chemistry was working out the theory of 
binding in sandwich compounds, a problem with which he became 
acquainted through a classmate, E.  0. Fischer, who was working on 
their synthesis. Professor Ruch’s interest in stereochemistry became 
the starting point for further purely mathematical investigations. Since 
1966, he has been the Director of the Institute for Quantum Chemistry 
at the Free University in Berlin.  

In  order to put the problem into manageable form, 
we require well-defined sets of objects-let us say classes 
of molecules, because molecules are what we want to 
classify. R4olecules belonging to a given class may be 
characterized by a common achiral molecular skeleton 
with ligands attached a t  the skeleton sites. We re- 
strict ourselves to ligands which fulfill the condition 
that molecules have the symmetry of the bare skeleton 
if all its ligands are of the same kind. Therefore mole- 
cules containing only ligands of one sort are achiral.‘ 
But, if ligands of different kinds are attached, we gen- 
erally have chiral molecules, provided we are not con- 
sidering special skeletons, for instance, skeletons in 
which all ligand sites lie in one plane of symmetry, e.g., 
benzene. 

We will discuss chiral classes which are specified by 
skeletons such that molecules are chiral, a t  least if all 
ligands are different. We assume that the ligands may 
be described by a one-parametric quality, measured by 
the parameter A, such that ligands of the same kind 
have equal parameter values. For a simple visualiza- 
tion we may take the ligands to be spheres of different 
size, the diameters being the parameters. It must be 
emphasized that this is an unnecessary limitation to a 
special picture. Examples of such skeletons are all 
achiral arrangements of a given number of sites in space, 
e.g., the corners of regular bodies (see Figure 1). Now 
we consider the whole set of molecules belonging to a 
class in the sense defined above and ask the question: 
what are the necessary and sufficient conditions for a 
class which permit us to separate all chiral molecules 
within that class into two antipodal subclasses such 
that the classification principle is as obvious as in the 
case of shoes? In other words, when is it possible to 
apply a concept like chiral relatedness which tells us for 
each pair of molecules whether or not they are equiva- 
lent (Le . ,  whether or not they have the property in com- 
mon that we are seeking)? The classification principle 
must not depend on arguments other than those inher- 
ent in chirality. If such a concept exists, we call all 
molecules belonging to one subclass homochiral and 
molecules belonging to different subclasses hetero- 
chiral. 

Chiral relatedness, Le. ,  chiral similarity of molecules 
within a class in question, certainly has to be based on 
similarity of ligands. Because a small change in the 

(1) E. Ruch, A. Schonhofer, and I. Ugi, Theor. Chim.  Acta,  7, 420 
(1967). 
(2) E. Ruch and A. Schonhofer, ibid., 10,91 (1968). 
(3) E. Ruch, ibid., 11, 183, 462 (1968). 
(4) E. Ruch and A. Schonhofer, ibid., 19, 225 (1970). 
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Figure 1. 

ligand qualities gives rise to small changes in the values 
of continuous functions of the ligand parameters, re- 
latedness may be discussed in terms of continuous func- 
tions. Continuous pseudoscalar functions conse- 
quently express similarity of molecules by neighboring 
values and distinguish enantiomers by the sign. Any 
separation into enantiomeric subclasses containing mol- 
ecules, which may be regarded as similar, can be related 
to the sign of a properly chosen continuous pseudo- 
scalar function. But this classification is as arbitrary 
as the choice of this function. The homochirality con- 
cept, however, does not allow this arbitrariness. From 
this we are forced to the conclusion that a homochirality 
concept necessitates the existence of a special continu- 
ous pseudoscalar function, which has only “achiral 
zeros,” ie., which has no zeros except for achiral mole- 
cules. Hence we understand the significance of a math- 
ematical fact proved elsewhere.3 

Continuous pseudoscalar functions without chiral 
zeros do exist, but only for certain classes. Classes for 
which such functions exist shall be called classes of cat- 
egory a ;  otherwise, classes of category b. The result 
of the mathematical analyses can be stated as follows: 
A class belongs to category a if, and only if, either the 
skeleton has only two sites for ligands or the number n 
of sites is larger, but the symmetry of the skeleton con- 
tains mirror planes and each mirror plane contains n - 
2 sites (sites which are fix-points for all symmetry op- 
erations of the skeleton are not taken into account). 
Accordingly, all the other classes belong to  category b. 
Two examples may explain the situation (see Figure 2). 
It is clear from the above definition that the trigonal 
bipyramid belongs to category a and the tetragonal bi- 
pyramid belongs to category b. 

The lack of a homochirality concept for category b 
can be shown explicitly for the tetragonal bipyramid by 
following a simple argument which reveals, to a certain 
degree, the idea of the general mathematical proof of 
the above theorem. 

We vary the ligands at positions 1 and 2 continuously 
so that we end with an interchanged position of the 
original ligands. Because we do not encounter an 
achiral situation in the course of this variation we may 
assign any pair of neighboring molecules to one of the 
two enantiomeric subclasses. Hence all molecules 
which we were passing on this path should be assigned 
to the same subclass, Following this, we perform the 
same variation with the ligands a t  positions 3 and 4. 
The same argument applies. But now we have got the 
enantiomer of the original molecule, and this one must 
certainly be in the enantiomeric subclass. Therefore, 
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Figure 2. 

chiral relatedness between neighboring molecules must 
be interrupted somewhere on the path from the original 
molecule to its enantiomer. But where? KO privi- 
leged point can be found; one would h a w  to make an 
arbitrary decision. Therefore we have to conclude 
that a homochirality concept does not exist for our class, 
and this fact is in agreement with our general statc- 
ment. 

Remembering our theorem that continuous pswdo- 
scalar functions without chiral zeros do exist for classcb 
belonging to category a, we can use the sign of its valucq 
as the criterion for homochiral molecules. It can be 
proved that pseudoscalar polynomials of the lowest dc- 
gree in ligand-specific parameters X are functions of this 
sort. For the classes of category a,  and for thew alonc, 
the mentioned polynomials have a special form which 
we call “chirality product.” It is a product of diffrr- 
ences of two parameters in all cases. For instance, the 
polynomial for the trigonal bipyramid is 

X(Al ,X2,A3,X4,AS)  = ( X l  - M ( X 2  - X3)(X3 - X,)(X4 - A d  
where the indices refer to the ligands on the corre- 
spondingly numbered slipleton sites. A general simple 
technique for finding these polynomials has been de- 
veloped.2 We may call all molecules for which th(. 
polynomial is positive “right,” and all molecules for 
which the polynomial is negative “left,” or vice 
versa. 

If our definition is physically relevant it must refer to  
the determining qualities of the ligands measured by 
the parameters X c  and must not depend on the special 
parameter chosen. This means, while changing the 
parameters, but keeping parameters which measure the 
same quality, the definition for chiral relatedness should 
not be affected. Parameters describing the samc qin l -  
ity are monotonic functions of each other: X‘ = A ’  
(A), with the condition dX’/dA > 0. In  this rase, from 
Xa < AI, follows X’(X,) < A’@,) and, therefore, the chiral- 
ity product of the parameters A,  and that of A,‘ = X’(X,) 
has the same sign for each molecule. Hence we see that 
the classification principle does not depend on the cho- 
sen parameter but only on the responsible physical 
quality of the ligands. In order to find the sign of the 
chirality product we need only the sequence of thr para- 
metric values for different ligands. This statcment 
does not apply to a classification according to enantio- 
meric subclasses when concerned with case b, ifliich 
again shows that a classification xould then alway be 
very artificial. 

A nomenclature such as the RS nomenclature pro- 
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THE CHIRALITY PHENOMENON 

posed by Cahn, Ingold, and Prelog which refers to the 
weight of ligands can be defined to give a classification 
according to homochirality for classes of category a. 
For b classes, on the other hand, it remains just a no- 
menclature, necessary and useful, but without physical 
meaning, like the concepts right and left for potatoes. 

Qualitative Completeness and Ensemble Operators 
Whether we describe a chirality measurement by a 

conventional theory based on a classical or a quantum- 
mechanical treatment or whether we start with chirality 
functions of a certain structure given by mathematical 
simplicity and having certain degrees of freedom ad- 
justable to the special kind of measurements,2 we are 
confronted with a phenomenon which shows that a gen- 
eral criticism appliesn4 

Let us study this on the basis of the well-known sec- 
tor rules applied to the Cotton effect in adamantanone 
derivatives (Figure 3). Our first method, the method 
of polynomials of lowest degree in ligand-specific pa- 
rameters, 2 , 4  leads to the chirality function 

X(xl,xZ,x3,x4) = A1 - x Z  + A3 - A4 

which is equivalent to the quadrant rule. Now let us 
apply this method for the nonracemic isomeric mixture 
of Figure 4. The superposition of the two responsible 
polynomials gives 

A1 - xz + AB - A 4  + A4 - x 1  + xz - AB = 0 

That shows that the quadrant rule as well as our An- 
satz gives zero for a nonracemic mixture of isomers, 
whatever the nature of the ligands may be. This is a 
fact that  demonstrates that the chirality function as 
well as the quadrant rule is missing an essential point 
in principle. 

The same situation is met in the case of allene deriv- 
atives (Figure 5 )  where we find a nonracemic mixture 
(see Figure 6) for which we get the identity 

1 
3 

The analogous phenomenon is normally found what- 
ever the classes are and the theories concerned. I n  
many cases one finds even chiral molecules with partly 

- { X(xljxZ>x3,h4) + X(xljx4,h2,h3) + x(hl,x3jh4,xZ) 1 E 0 
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equal ligands for which the chirality function vanishes 
independently of the nature of these ligands, but then 
always a nonracemic mixture of isomers with ligands 
different from each other can be found for which an 
identity relation of the above type holds. Therefore 
what we have to demand from a satisfactory theory is 
that it leads to a chirality function for which the fol- 
lowing statement is true: there i s  no nonracemic mix- 
ture of isomers for which the chirality function vanishes, 
being zero whatever the nature of the ligands may  be. We 
call a function of this type “qualitatively complete.” 
In order to be able to construct such functions or to 
criticize a given theory on this line we have to get an 
idea of the set of all nonracemic mixtures. We need 
especially a concept referring to isomeric mixtures 
which can be called chiral or achiral, independently of 
the composition of the ligand assortment. 

A linear combination of permutation operators of the 
symmetric group Pn with positive real coefficients can 
be defined as an operator which, when applied to a mole 
of identical molecules, gives rise to a mixture of iso- 
meric components, the coefficients being the mole ra- 
tios. Therefore we speak of an ensemble operator and 
call i t  chiral if the resulting mixture is nonracemic in 
case all ligands are different; otherwise it is called 
achiral. Because an ensemble operator is simultane- 
ously an element of the group algebra it can be decom- 
posed into components belonging to the irreducible 
representations rlrz. , , of the group Pn, Among these 
we can specify those which contain the chirality repre- 
sentation by means of character tables (characters for 
permutations representing rotations equal to + 1 and 
for permutations representing reflections equal to - l), 
and simultaneously we can find a number zI for each 
representation which shows how often the chirality 
representation is contained. These properties tell US 

what we need for the components of an ensemble op- 
erator. All components belonging to representations 
with z I  = 0 are achiral, and all ensemble operators be- 
longing to a representation with 2, # 0 can be decom- 
posed into linear combinations of linearily independent 
components, where z12 of them are chiral. A permuta- 
tion operator can be defined as also acting on a chirality 
function, and all functions generated from one given 
chirality function by all permutation operators define a 
representation space of pn. Thus we find the math- 
ematical criterion for qualitative completeness of a 
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chirality function. The result reads as follows: a 
chirality function i s  qualitatively complete i f ,  and only i f ,  
by applying the peymutation operators of 53% we get a rep- 
resentation space foy the representation 

r = xr  rr 
T 

where zT are the numbers explained above. 
Although the concept “qualitatively complete’’ is de- 

rived from properties related to isomeric mixtures it is 
relevant for the description of the chirality phenomenon 
on a homogeneous set of molecules also. That means 
that it is relevant for the phenomenon related to a mol- 
ecule as well. The general properties of chirality func- 
tions due to their qualitative completeness, as well as 
mathematical proofs, are given e l s e ~ h e r e . ~  

We content ourselves with learning some of the con- 
sequences on the basis of special examples. For this 
purpose we use predominantly our first approximation 
method for qualitatively complete chirality functions. 
This method leads to chirality functions which are lin- 
ear combinations of polynomials each of which belongs 
to one of the Zrz7 representation spaces and is of lowest 
possible degree in ligand specific parameters. There- 
by we need 2 r X r  different parameters for each ligand, 
and polynomials belonging to different representation 
spaces each containing exactly one of them. Some- 
times we shall refer to the second method which results 
in a linear combination of chirality functions belonging 
to different representation spaces as well, but each of 
these is a linear combination of functions which depend 
on variables of as few as possible ligands. 

Formulas according to both methods can be used as 
a semiempirical Ansata which necessitate the deter- 
mination of parameters or functions from experiments 
to predict the chirality observation on further mole- 
cules, or they can be used as a very useful frame theory 
for a quantum-mechanical treatment of a special kind 
of pseudoscalar measurements on the molecules of a 
given class. 

If we forget both fields of application we are still 
left with a lot of information which is of use for dis- 
cussing the chirality phenomenon for a class of mole- 
cules. This point of view is predominantly what we 
shall point out in the course of further discussions. 

For the class of allene derivatives we find according to 
the first method the following qualitatively complete 
chirality function 

x(11,1z,13!14) = €(XI - x z ) ( b  - h4) + 
€’(Pl - P d ( P 2  - P3)(/.43 - Pl) x 

(P4 - Pd(P4 - d ( P 4  - P 3 )  

where the arguments 1, represent now a set of real 
parameters (in our case Xi and pi) specific for the ligands 
on correspondingly numbered skeleton sites, the CO- 

efficients E and E’  equal f l  or -1. Contrary to our 
experience with the formerly used chirality function 
for this class we do not get a zero identity in case of the 
mixture shown in Figure 6 but 

1 
{ X(11,1z,hh) -k x ( L J ~ , ~ J z )  f x(Ii!14,bjh) 1 = 

€’(PI - PZ) (@Z - 123)  (P3 - P1) (P4 - PI) (P4 - P2) (F4 - 1 1 3 )  

which shows that the first polynomial vanishes and thc 
second is reproduced, thereby exclusively describing 
the pseudoscalar observation on this isomeric mixture. 

Taking the nonraccmie mixture given in Figure 7 
we get 

€ 
- { (A1  - hZ)(A3 - h4) f (A1 - X 4 ) ( 1 3  - A,) ] 2 

which shows the dependence of 11 disappears. Thc 
same is true for a molecule if the ligands a t  position 2 
and 4 of Figure 1 are equal. In this case we get 

X(1i,1zj13,1z) = €(hi - X z ) ( h  - Xz) 

From these statements we conclude that components 
belonging to different representation spaces represent 
physically independent phenomena. According t o  
the first method they are expressed by different param- 
eters which represent independent physical qualities, 
and can be investigated separately by measuring cor- 
responding mixtures. 

Now, what about the physical meaning of these dif- 
ferent phenomena? To answer this question \+e rrlate 
again to our special example and compare it with a 
different class, the class of methane derivatives (Figure 
8). The qualitatively complete chirality function 
according to the first method is 

x(li,1&,14) = 

e ’ b l  - PZ) (FZ - 113) (113  - pl) (GLq - 111) (p4 - P 2 )  bL4 - 1*3) 

From the comparison of both classes we learn that 
the second term in the formula for allene derivatives 
describes what is exclusively responsible for the class of 
methane derivatives. Therefore the relative wigh t  of 
this component tells us to what extent we are justified 
in taking a given skeleton of DZd symmetry as having the 
approximate symmetry of a regular tetrahedron. This 
certainly is a question which one may ask if confrontrd 1 
with a skeleton which has not precisely the higher sym- 
metry, but nearly so. Our formula shows how to  find 
the answer to this question, as i t  consists of related 

Figure 7. 
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components, which can be measured separately on cor- 
responding isomeric mixtures. 

Analogous situations are encountered whatever the 
chosen class may be. If our chirality function were not 
qualitatively complete, we would always miss certain 
contributions to any real pseudoscalar measurement. 
Related to a special kind of measurement, of course, it 
may happen that only some of the components give 
essential contributions. The question which compo- 
nent phenomena are of predominant significance cannot 
always be answered in advance by obvious criteria, and 
theories comprising only some of them may unfortu- 
nately be restricted just to components irrelevant for the 
measurements to be described. Quantum-mechanical 
treatments, for instance, which are characterized by a 
given order of perturbation theory may lead to a se- 
lection of components which turn out to be absurd 
from the point of the experimentalist’s view. 

We may visualize the essential background of our 
analysis and find its consequences in a pragmatic form 
by taking advantage of the fact that  all irreducible 
representations of 63% are in a 1: 1 correspondence with 
the so-called partition diagrams of the number n, dia- 
grams which represent the various possibilities of de- 
composing the number n into a sum of numbers. Figure 
9 shows the diagrams related to number 4. If we 
mark by shading all diagrams belonging to representa- 
tions for which z7 # 0 we get, in the case of allene deriv- 
atives, the shadings of Figure 9. Let us be satisfied 
with the knowledge that i t  can be done generally ac- 
cording to well-defined rules. Because of the cor- 
respondence between irreducible representations and 
ensemble operators, the unshaded diagrams represent 
achiral ensemble operators, and for each shaded one we 
find at  least one chiral ensemble operator. 

Ensemble operators are just one concept related to 
the diagrams, but we find a completely different one 
which can also be assigned to the diagrams. Let the 
boxes be representations for ligands of the same kind 
as far as they belong to one horizontal row; then the 
diagrams represent compositions of ligand assortments 
as far as the numbers of equal ligands are concerned. 
Wc call such a composition a ligand partition. Further- 
more, we shall call a ligand partition active if we can 
construct a chiral molecule by properly distributing the 
ligands on the skeleton sites; otherwise it will be called 
inactive. It can easily be proved that all ligand parti- 

Figure 10. 

tions represented by shaded diagrams are active, but 
we infer from our example that we may find further 
active partitions, because ya, y6, and y4 represent active 
partitions, and only y1 and yz represent inactive ligand 
partitions. 

One may get an idea how to find all active partitions 
by making use of a concept invented by Young6 (1901) 
which calls a diagram smaller than another one if, when 
descending from the top to the bottom, the length of 
its first different horizontal row of boxes is shorter. 
This definition allows an ordering of the diagrams 
along a chain as it was done for the number 4 in our 
figure. One finds the biggest a t  the top of the scheme 
and the smallest a t  the bottom. From the above ex- 
ample one feels inclined to suggest that  a theorem can 
be found which shows that all diagrams not bigger than 
any of the shaded ones would represent active parti- 
tions, all others inactive partitions. 

One can find examples which show that this sugges- 
tion is wrong. As we shall learn from the next section, 
having a rule like this would be of extreme advantage 
in winning further insight into the chirality phenom- 
enon. Mathematicians have drawn many conclu- 
sions from Young’s order concept, but these conclusions 
are not completely satisfying as far as the resulting 
statements are concerned. Therefore, even from the 
point of pure mathematics, a somewhat different struc- 
ture concept would be desirable, a concept referring to 
a more fundamental structure of numbers which simul- 
taneously allows one to state a theorem for ligand parti- 
tions different from but similar to the suggested one. 

The Partition Lattice 
We call a diagram, y, smaller than another one, 

y’, y c y’, if we can construct y from y’ by pulling 
boxes from upper lines to lower ones. We supplement 
this definition by saying y c y for each diagram y. 
For all numbers n 5 5 our definition turns out to be 
equivalent to that given by Young. But number 6 and 
higher numbers show even more fundamental differ- 
ences (Figure 10). From Figure 10 we conclude: 
contrary to Young’s definition which results in an “or- 
der,” our definition results in a “half-order.” The 
half-order can be proved to be a lattice; this means that 
for each pair of diagrams there exists a smallest bigger 
one and a biggest smaller one. The definition given 

(5)  A.  Young, Proc. London Math. SOC. (l), 33, 97 ((1901). 
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above can be brought into another form by using partial 
sums o( of the lengths v t  of the i first horizontal rows 
t = 1,2 ,  . * .i. 

Thereby we get y c y’ if, and only if, 0% 5 ot’ for all 
i. Referring to this partition lattice we have proved 
the desired theorem which relates both to molecules 
and ensemble operators. All partitions smaller than 
any  shaded one, and only those, are active for molecules. 
All partitions smaller than a given shaded one, and only 
those, are active for corresponding chiral ensemble oper- 
ators. The latter statement says that noriracemic 
mixtures of isomers associated with a shaded diagram 
can be established by ligand partitions according to 
any of the smaller diagrams, but only those. 

The consequences of these theorems are numerous. 
We shall give here just a selection of them. It can be 
concluded from the above theorems that related to a 
given diagram there exists no smaller diagram the first 
line of which is longer or the first column of which is 
shorter. Therefore we see that, within the set of all 
shaded diagrams, we can specify four numbers which 
should be characteristic for the chirality phenomenon 
of a given class, and we call them the chirality numbers 
of the class. These four numbers are given by the 
longest and the shortest first line and column of all 
shaded diagrams. Two of them are of outstanding 
interest, i.e. the chirality order 0, defined as the longest 
first line of all shaded diagrams; the chirality index u, 
defined as the shortestfirst column of all shaded diagrams. 
It follows that the chirality order defines the max imum 
number of equal ligands which occur in chiral molecules; 
the chirality index defines the minimum number of differ- 
ent kinds of ligands which are present in each chiral 
molecule. 

Let us go into further details with regard to the chiral- 
ity order. It can be proved that n - 3 is a lower limit 
for the chirality order of all chiral classes. Further- 
more, we can extrapolate our definition to get an inter- 
pretation for o = n and o = 0. If o equals n, then 
molecules with ligands all equal to each other are chiral. 
Therefore o = n defines classes with a chiral skeleton. 

If we 
have different ligands exclusively, which means each 
ligand is only equal to itself, then the molecule is already 
achiral. Therefore o = 0 defines achiral classes, i.e., 
classes which do not contain chiral molecules (e.g., benzene 
derivatives). 

The chirality order concept shows its essence in con- 
nection with our second method mentioned above. The 
result of such an analysis can be formulated as a physical 
statement: If o # 0, then n - o is the minimum 

The case o = 0 can be interpreted as follows. 

number of ligands which give additive contributions to 
a chirality observation by interaction. Therefore we 
distinguish five cases which show characteristic dif- 
ferences in theories related to them whatever kind thcy 
may be. 

o = n. Molecules with ligands all equal to each other 
are chiral. Therefore the class has a chiral skeleton. 
A theory has to be concerned with describing the slrele- 
ton chirality. 

o = n - 1. hIolecules with n - 1 identical ligands, 
but not more, are chiral. Therefore pseudoscalar ob- 
servations may be described as additional contributions 
from single ligands (octant, quadrant, sector rules). 

o = n - 2. We may describe a chirality obscrva- 
tion as a superposition of contributions from pairs of 
ligands (principle of pairwise interactions : Kauzmann, 
Clough, and Tobiasaa). 

We need a t  least three ligand interac- 
tions (e.g., methane derivatives). 

o = n - 3. 

o = 0. The class is achiral by definition. 
It should be emphasized that the minimum number 

of interacting ligands mentioned in the above state- 
ments ensures that we get a component of the qualita- 
tively complete chirality function different from zero. 
Corresponding theorems ensuring the qualitative com- 
pleteness can also be derived from the partition lattices4 
i\Iost of the known theories are found to be restricted 
to the component characterized by the chirality order. 

We wish to exemplify the use of our structural in- 
sight for a criticism of a quantum-mechanical theory 
concerning a special class. To describe the optical 
rotatory power for the class of methane derivatives we 
take the central carbon atom with four directed bonds 
according to T d  symmetry as skeleton and allow ligands 
which have, a t  least with regard to their averaged con- 
formations, the CSv symmetry of the radial bonds. One 
sees from the maximum number of equal ligands present 
in chiral molecules that o = 1, and therefore n - o = 
3, which means that we need three-ligand interactions. 
A quantum-mechanical treatment on the basis of multi- 
pole interactions between ligands as worked out by 
Kirkwoodab for this class is characterized by the order of 
perturbation theory. The first-order perturbation 
gives only interactions between two ligands ; the second 
order is very complicated so that one is inclined to ap- 
ply only first-order perturbation treatment. This, 
however, cannot describe, as we have shown, a chirality 
observation for the above-defined class of moleculcs. 
Therefore, if we want to keep the first-order perturba- 
tion, as Kirkwood does, we are forced to weaken the 
above-mentioned conditions. That means, for in- 
stance, that  we have to treat deviations from tctra- 
hedron-like bond angles or a ligand conformation or a 
set of ligand conformations which has not the averaged 
symmetry C3”. This change of condition leads to a sit- 
uation which can be characterized by a higher chirality 
order, and therefore two ligand interactions are enough 

(6 )  (a) W. Kauzmann, F. B. Clough, and I. Tobias, Tetrahedron, 
13, 57 (1961); (b) J. G. Kirkwood, J .  Chent. Phys., 5, 479 (1937). 



Vol. 5 ,  1972 THE CHIRALITY PHENOMENON 55 

Figure 11. 

to derive a chirality function. This chirality function, 
however, is not qualitatively complete: one neglects 
thereby a component which is due to an ensemble of 
conformers which has the above-mentioned symmetry 
properties. The neglected component would describe 
an additional part for the chirality observation, even if 
the real average of conformations has not the Ca, sym- 
metry. Kirkwood’s treatment gives a contribution 
which refers to the described deviations only, and his 
formula becomes zero if the deviations vanish. This 
may be good for the special molecule he treats (Figure 
11) as far as the mentioned deviations are big enough to 
give the major part of the observed phenomena, but 
this should be tested. Generally this procedure is 
questionable, because we have a first-order effect with 
regard to the deviations which is described by first-or- 
der perturbation, but a zero-order effect in the devia- 
tions also which can be described only by the second- 
order perturbation. 

A generalized quantum-mechanical theory including 
second-order perturbation7 confirms what we have 
pointed out here. It leads to the physical interpreta- 
tion of all quantities which occur in both our methods 
and are left undetermined there. It also allows an in- 
teresting comparison with Kirkwood’s theory and other 
theoretical treatments of the optical rotatory power for 
the class of methane derivatives. 

In  conclusion: the algebraic structure we have ex- 
plained here provides many systematic aspects related 
to the chirality phenomenon itself and to theories con- 
cerned with special chirality observations. More re- 
marks which refer exclusively to the use of the given 
theorems and formulas for experimental purposes with- 
out the need of further reference to quantum mechanics 
are found in the next section. 

Experimental Remarks 
We may use the formulas according to one of our 

methods, let us say the first method, as a semiempirical 
procedure for discussing the optical rotatory power as 
an example. This is possible because the number of 
different chiral molecules grows more rapidly than the 
number of experiments one needs to determine the pa- 
rameters of involved ligands. 

In the case of classes where qualitatively complete 
formulas become very complicated, we may restrict our- 
selves to subclasses for which these formulas become 
simpler. These subclasses will be found to be just 
those which are interesting from the point of chemistry. 
The situation becomes clear if we remember that re- 
strictions with regard to ligand partitions lead generally 
to the fact that  certain components of qualitatively 
complete chirality functions vanish. Therefore condi- 

(7) D. Haase and E. Ruch, Theor. Chim. Acta, in preparation. 
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tions like “not more than a certain number of different 
kinds of ligands” or “not less than a certain number of 
equal ligands, say hydrogen atoms’’ lead to simplified 
formulas which can be read from the partition lattice. 
With reference to subclasses defined in this way these 
simplified formulas are then qualitatively complete. 

As a first example we give the qualitatively complete 
chirality function according to the first method for ada- 
mantanone derivatives according to Figure 12. If we 
restrict ourselves to molecules with ligand partitions 
not smaller than y4, which means to molecules having 
not more than two different kinds of ligands, then the 
polynomial in p vanishes and the X polynomial, there- 
fore, is qualitatively complete. In  other words, for 
this subclass the quadrant rule is correct. 

As a second example we take again the class of allene 
derivatives (see Figure 13). If we restrict ourselves to 
molecules with less than four different kinds of ligands 
then we are left with the h polynomial. 

Let us try a discussion in extenso for measurements of 
the rotation angle a t  the sodium D line for allene deriv- 
atives. We may hope that even for derivatives having 
four different ligands a description by the X component 
is satisfying. This can be expected because we may 
consider the accumulated double bonds essentially as 
being the skeleton influenced by ligands in their respec- 
tive positions, and this situation is very far from being 
a regular tetrahedron. To be sure, though, that  exper- 
imentally determined h values are not falsified by the 



56 RUCH Accounts of Chemical Research 

neglect of the p component, we use for its determination 
exclusively compounds with two equal ligands. 

To test our procedure we need more different com- 
pounds than the number of kinds of ligands involved. 
The number 2p of different chiral molecules which can be 
built up from a given number N of different kinds of lig- 
ands grows according to the formula 

p = ‘ /8N(N - l ) { (N - 2 ) ( N  + 1) + 4) 
the above relation can be derived according to  methods 
originated by P61ya8 and generalized by us.@ There- 
fore T gives the number of different pairs of enantio- 
meric molecules. Table I gives a quantitative idea of 
this relation. 

Because we could not find a known variety of com- 
pounds which is bigger than the number of constituting 
ligands, we will refer to some new compounds and cor- 
responding measurements which will be published in 
detail shortly.1° Table I1 gives the measured rotation 
angles for compounds which are used for the determina- 
tion of e and the X values in Table 111. The calculated 
rotation angles in Table I1 differ from the experimental 
ones just by round-off errors of the X values. Because 

Table I 

N 1 2 3 4 5 10 
p 0 1 6 21 55 1035 

Table I1 

Compound Ref Exptl  Calod 

C8Hs H 
\ 

CeHc H 
\ 

12 +420 +421 
\ 

COOH 
/c=c=c 

H 
CsHs CHa 

\ 

/ 

CeHj CzHs 
\ 

/ \ 

c=c=c  10 +149 +148 
\ 

COOH CHa 

c=c=c  10 $41 $41 

CtHo COOH 

Table I11 

e = l  
X(H) = 0 

X(CH3) = 7 . 2  
X(C2Hj) = 11 .2  
X(CoHa) 31.9 

X(CO0H) = 13 .2  

(8) G. P6lya, Acta Math. ,  68, 145 (1937). 
(9) E. Ruch, W. Hasselbarth, and B. Richter, Theor. Chim. Acta, 

(10) G .  Kresze, W. Runge, and E. Ruch, Chem. Ber., in prepara- 

(11) J. M. W‘albrick, J. A l .  Wilson, and W. M. Jones, J. A m e r .  

(12) K. Shingu, S. Hagishita, and M. Nakagawa, Tetrahedron 

19, 288 (1970). 

tion. 

Chem. Soc., 90, 2895 (1968). 

Lett., 4371 (1967). 

Table IV 
Compound Ref Exptl  Calod 

CsHs H 
\ 

12 $318 4-326 
\ 

COOH 
/c=c=c 

/c=c=c 

/c=c=c 

/c=c=c 

CH3 
C6H6 H 

\ 
12 $280 $273 

\ 
COOH CzH5 

CsH5 CH3 
\ 

10 $125 f124 
\ 

COOH C2Hs 
CeHs CzHo 

\ 
10 $51 +49 

\ 
COOH CHI 

Table V 

X(i-Pr) 16 .1  X(a-Np) ss 50 .4  
X(i-Bu) = 18 .2  X(n-Pr) c 14 .9  
X(c00Et)  c 13.6 X(C0OMe) = 13.4 
X(n-Bu) = 18.2 

X values can be determined by experiments apart from 
a common additive constant, we have chosen A(H) = 
0. Table IV contains experimental and predicted an- 
gles which are determined using the parameters of Ta- 
ble 111, thus furnishing a test for the applied formula. 

it shows that 
the ‘khortened Ansatz” consisting of the X polynomial 
is completely satisfactory, and this gives impetus to the 
determination of X parameters for further ligands. 
Some, derived from measurements not shown here, are 
given in Table V. Bre t~s t e r ’~  has also discussed the 
optical rotatory power for allene derivatives on the 
basis of ligand-specific parameters. Experiments for 
other classes would be of interest, both from the exper- 
imentalist’s point of view and for testing corresponding 
formulas. Of course, after having made sure that for- 
mulas are quantitatively satisfactory, the interest be- 
comes directed to compounds which are in disagree- 
ment because just deviations from rules necessitate cx- 
planations which give additional information concern- 
ing, e.g., the influences of the solvent, hydrogen bonds, 
or skeleton distortions, etc. 

Finally we should like to  emphasize that the signifi- 
cance of the algebraic theory, sketched in this Account, 
is not primaril? based on the quantitative aspects of 
formulas according to one or both of our methods. 
Rather it should be judged from the point of insight 
into the chirality phenomenon itself, its decomposition 
into components, and the consequence connected there- 
with. Moreover, questions which have arisen in this 
context refer to pure mathematics and seem to lead to 
interesting aspects in this field. 

I express my heartiest thanks to Professors I .  Dunnitz and H .  
Simmons ,for many helpful suggestions on style and grammar. 

The correspondence seems convincing : 

- 
(13) J. H. Brewster, Top .  Stereochem. 2, 1 (1967). 


